Rational points of quiver moduli spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points of Quiver Moduli Spaces

For a perfect field k, we study actions of the absolute Galois group of k on the k-valued points of moduli spaces of quiver representations over k; the fixed locus is the set of k-rational points and we obtain a decomposition of this fixed locus indexed by elements in the Brauer group of k. We provide a modular interpretation of this decomposition using quiver representations over division alge...

متن کامل

Counting rational points of quiver moduli

It is shown that rational points over finite fields of moduli spaces of stable quiver representations are counted by polynomials with integer coefficients. These polynomials are constructed recursively using an identity in the Hall algebra of a quiver.

متن کامل

The Inverse Galois Problem and Rational Points on Moduli Spaces

We reduce the regular version of the Inverse Galois Problem for any finite group G to finding one rational point on an infinite sequence of algebraic varieties. As a consequence, any finite group G is the Galois group of an extension L/P (x) with L regular over any PAC field P of characteristic zero. A special case of this implies that G is a Galois group over Fp(x) for almost all primes p.

متن کامل

Projective Toric Varieties as Fine Moduli Spaces of Quiver Representations

This paper proves that every projective toric variety is the fine moduli space for stable representations of an appropriate bound quiver. To accomplish this, we study the quiver Q with relations R corresponding to the finite-dimensional algebra End (⊕ r i=0 Li ) where L := (OX , L1, . . . , Lr) is a list of line bundles on a projective toric variety X . The quiver Q defines a unimodular, projec...

متن کامل

Moduli spaces of Chern-Simons quiver gauge theories

We analyse the classical moduli spaces of supersymmetric vacua of 3d N = 2 Chern-Simons quiver gauge theories. We show quite generally that the moduli space of the 3d theory always contains a baryonic branch of a parent 4d N = 1 quiver gauge theory, where the 4d baryonic branch is determined by the vector of 3d Chern-Simons levels. In particular, starting with a 4d quiver theory dual to a 3-fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2020

ISSN: 1777-5310

DOI: 10.5802/aif.3334